Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514314

RESUMO

Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor ßs (TGFßs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Mitocôndrias/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Inativação Gênica , Lactatos/metabolismo , Ventrículos Laterais/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Neurônios/metabolismo , Fator de Crescimento Derivado de Plaquetas , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
2.
Neoplasia ; 20(5): 510-523, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29626751

RESUMO

Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are highly specialized subcellular compartments that are shaped by ER subdomains juxtaposed to mitochondria but are biochemically distinct from pure ER and pure mitochondria. MAMs are enriched in enzymes involved in lipid synthesis and transport, channels for calcium transfer, and proteins with oncogenic/oncosuppressive functions that modulate cell signaling pathways involved in physiological and pathophysiological processes. The term "cancer" denotes a group of disorders that result from uncontrolled cell growth driven by a mixture of genetic and environmental components. Alterations in MAMs are thought to account for the onset as well as the progression and metastasis of cancer and have been a focus of investigation in recent years. In this review, we present the current state of the art regarding MAM-resident proteins and their relevance, alterations, and deregulating functions in different types of cancer from a cell biology and clinical perspective.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Front Oncol ; 7: 180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28913175

RESUMO

Inter-organelle membrane contact sites are emerging as major sites for the regulation of intracellular Ca2+ concentration and distribution. Here, extracellular stimuli operate on a wide array of channels, pumps, and ion exchangers to redistribute intracellular Ca2+ among several compartments. The resulting highly defined spatial and temporal patterns of Ca2+ movement can be used to elicit specific cellular responses, including cell proliferation, migration, or death. Plasma membrane (PM) also can directly contact mitochondria and endoplasmic reticulum (ER) through caveolae, small invaginations of the PM that ensure inter-organelle contacts, and can contribute to the regulation of numerous cellular functions through scaffolding proteins such as caveolins. PM and ER organize specialized junctions. Here, many components of the receptor-dependent Ca2+ signals are clustered, including the ORAI1-stromal interaction molecule 1 complex. This complex constitutes a primary mechanism for Ca2+ entry into non-excitable cells, modulated by intracellular Ca2+. Several contact sites between the ER and mitochondria, termed mitochondria-associated membranes, show a very complex and specialized structure and host a wide number of proteins that regulate Ca2+ transfer. In this review, we summarize current knowledge of the particular action of several oncogenes and tumor suppressors at these specialized check points and analyze anti-cancer therapies that specifically target Ca2+ flow at the inter-organelle contacts to alter the metabolism and fate of the cancer cell.

4.
Adv Exp Med Biol ; 997: 49-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815521

RESUMO

The execution of proper Ca2+ signaling requires close apposition between the endoplasmic reticulum (ER) and mitochondria. Hence, Ca2+ released from the ER is "quasi-synaptically" transferred to mitochondrial matrix, where Ca2+ stimulates mitochondrial ATP synthesis by activating the tricarboxylic acid (TCA) cycle. However, when the Ca2+ transfer is excessive and sustained, mitochondrial Ca2+ overload induces apoptosis by opening the mitochondrial permeability transition pore. A large number of regulatory proteins reside at mitochondria-associated ER membranes (MAMs) to maintain the optimal distance between the organelles and to coordinate the functionality of both ER and mitochondrial Ca2+ transporters or channels. In this chapter, we discuss the different pathways involved in the regulation of ER-mitochondria Ca2+ flux and describe the activities of the various Ca2+ players based on their primary intra-organelle localization.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Retículo Endoplasmático/patologia , Metabolismo Energético , Humanos , Microdomínios da Membrana/patologia , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/patologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1422-1435, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28235644

RESUMO

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca2+-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.


Assuntos
Sistemas de Transporte de Aminoácidos/biossíntese , Ácido Aspártico/análogos & derivados , Proliferação de Células , Regulação para Baixo , Proteínas Mitocondriais/biossíntese , Neurônios/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/deficiência , Antiporters/genética , Antiporters/metabolismo , Ácido Aspártico/biossíntese , Linhagem Celular , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Neurônios/patologia , Transtornos Psicomotores/genética , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/patologia
6.
Sci Rep ; 7: 40797, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084445

RESUMO

Lysosomes are membrane-bound organelles mainly involved in catabolic processes. In addition, lysosomes can expel their contents outside of the cell via lysosomal exocytosis. Some of the key steps involved in these important cellular processes, such as vesicular fusion and trafficking, require calcium (Ca2+) signaling. Recent data show that lysosomal functions are transcriptionally regulated by transcription factor EB (TFEB) through the induction of genes involved in lysosomal biogenesis and exocytosis. Given these observations, we investigated the roles of TFEB and lysosomes in intracellular Ca2+ homeostasis. We studied the effect of transient modulation of TFEB expression in HeLa cells by measuring the cytosolic Ca2+ response after capacitative Ca2+ entry activation and Ca2+ dynamics in the endoplasmic reticulum (ER) and directly in lysosomes. Our observations show that transient TFEB overexpression significantly reduces cytosolic Ca2+ levels under a capacitative influx model and ER re-uptake of calcium, increasing the lysosomal Ca2+ buffering capacity. Moreover, lysosomal destruction or damage abolishes these TFEB-dependent effects in both the cytosol and ER. These results suggest a possible Ca2+ buffering role for lysosomes and shed new light on lysosomal functions during intracellular Ca2+ homeostasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cálcio/metabolismo , Lisossomos/metabolismo , Equorina/genética , Equorina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Transporte Biológico , Sinalização do Cálcio , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Transdução de Sinais
7.
Int J Cardiol ; 221: 993-7, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27441480

RESUMO

BACKGROUND: Recent studies in cell cultures hypothesized that the long-sought molecular pore of the mitochondrial permeability transition pore could be the Fo ATP synthase C subunit (Csub). We assessed Csub in patients with ST-segment elevation myocardial infarction (STEMI) and if it is associated with surrogate endpoints of myocardial reperfusion. METHODS: We enrolled 158 first-time acute anterior STEMI treated with successful percutaneous coronary intervention (PCI). Csub was measured, after the procedure, in serum by ELISA. Csub values were related to thrombolysis in myocardial infarction (TIMI) myocardial perfusion grade (TMPG), TIMI frame count (TFC), ST-segment resolution and cardiac marker release. Echocardiography and clinical outcome were recorded at 6months. RESULTS: Csub was detectable in serum and it was not normally distributed (6.3% [4-9.3%]). Csub values were higher in patients with poor values of TMPG and TFC (p=0.002 and p=0.001, respectively). Csub values were higher in patients with absent or partial ST-segment resolution as compared to those with complete ST-segment resolution (p<0.0001 and p=0.003, respectively). After adjustment for potential confounding factors, Csub emerged as an independent determinant of absent ST-segment resolution (HR 1.8, 95% CI 1.5-2.3, p=0.007), TMPG 0-1 (HR 1.7, 95% CI 1.3-2.5, p=0.01) and TFC above the median value (HR 1.5, 95% CI 1.3-2.1, p=0.03). Left ventricle ejection fraction, wall motion score index and cumulative incidence of death and heart failure were worse in patients with elevated Csub. CONCLUSIONS: Our study is the first evidence that Csub is detectable in STEMI patients and that it is significantly related to several surrogate markers of myocardial reperfusion.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/sangue , Intervenção Coronária Percutânea/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST , Idoso , Angiografia Coronária/métodos , Ecocardiografia/métodos , Eletrocardiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Reperfusão Miocárdica/métodos , Subunidades Proteicas , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Estatística como Assunto
8.
Biol Cell ; 108(10): 279-293, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27234233

RESUMO

Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl-2 family but also dynamin-related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl-2 family members and active participation of fission-fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl-2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl-1.


Assuntos
Apoptose , Dinâmica Mitocondrial , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/análise , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...